

cheetah_wp_statarb.docx Copyright © 2012, Cheetah Solutions V1.1 Sep 2013
Patent Pending 61739845

 Ultra Low Latency Arbitrage Whitepaper

Introduction

Most algorithmic trading systems based on statistical arbitrage rely on executing the algorithm in a
server system usually specially written low latency code so that the algorithm can touch the market
in front of other traders.

There have been significant advances, in software architectures for minimising latency caused by
CPU cache misses, thread wakeups, and data copying. In addition, there has been a growing trend to
push functionality down into the hardware. Typically, the TCP/IP network protocol decoding has
been moved into the Network Interface Card (NIC) so that the software doesn’t need to spend time
decoding the network protocols. Now we are beginning to see full Market Feed protocol decoding in
the hardware as shown in the figure below.

However, it is still necessary to feed the market data into the server, have it processed by the
software algorithm and then have the software place a market order. Despite all of the CPU and
software architecture advances, the server side processing is still the slowest part of the system:

The data must be marshaled across
the PCIe server bus to the NIC device
driver, the application thread has to
be ready and waiting, instructions
will be executed sequentially by the
CPU (or if multithreaded, some
delays will occur in synchronising the
result set). The resultant market
order must be marshaled back over
the server bus to the NIC where it
can be encoded and transmitted to
the exchange. With all this
marshaling, threading, drivers, and
instruction execution, it is no wonder that the tick-to-trade latency can easily be in the order of 100s
of microseconds.

What if you could reduce that tick-to-trade latency to less than one
microsecond?

-2-

cheetah_wp_statarb.docx Copyright © 2012, Cheetah Solutions V1.1 Sep 2013
Patent Pending 61739845

FPGA Solutions

FPGAs are integrated circuits (chips) that provide configurable hardware. Now that hardware
vendors have started to offer NICs which contain both network components and user-configurable
FPGAs, the door is open to implementing the Alg directly in the hardware, an architecture that offers
significant advantages:

 No longer bound to the sequential execution of instructions by a CPU, a hardware designer
can design parallel circuitry to implement the Alg to execute much more quickly – if the Alg
requires two multiplies, then instead of executing them one at a time, the designer just
creates two completely separate multiplier blocks and runs them simultaneously.

 The critical execution path for tick-to-trade no longer needs to cross over the PCIe bus into
the server and back out again.

FPGA enhanced NICs make an ideal platform to develop ultra-fast solutions for trading, opening up
the possibility to receive market ticks, evaluate an algo computation, and place an outgoing order
entirely from within the hardware.

This approach completely eliminates the latency introduced by the server and software and allows
tick-to-trade latencies of under one microsecond.

In the diagram to the left, the Alg
has been redesigned as an FPGA
HW solution and deployed within
an FPGA on the NIC. The flow now
goes direct from the Market Feed
decoder through the Alg and on
to the Market Order Encoder (if
the Alg decides a trade is
required).

The critical flow (red arrows) stays entirely within the HW on the network
interface card.

The server software now participates only in the supervision of the Alg’s behavior and perhaps to
provide some level of control over the alg.

By keeping the tick to trade flow within the hardware, we completely eliminate the latencies
introduced by the round trip to the server, including:

 Transmission across the PCIe bus.

 CPU cache invalidation and refresh.

 Waking up of the server thread.

 Sequential execution of the algorithm’s instructions.

-3-

cheetah_wp_statarb.docx Copyright © 2012, Cheetah Solutions V1.1 Sep 2013
Patent Pending 61739845

In addition to this, we can also exploit the parallelism inherent in hardware design such as multiple
concurrent floating point operations and parallel data movements.

However, the downside is this:

FPGAs are difficult to program, requiring expert and experienced developers.
Even then, making a small change can result in a design that no longer fits or
meets timing constraints within the FPGA.

The result is that traditional FPGA solutions take significantly longer to develop than the equivalent
algorithm in software and typically require several days if not weeks to make even a small tweak to
the algorithm.

The Cheetah-Solution

Providing the best of both worlds …

Cheetah-Solutions brings reconfigurability into the equation providing both high performance and
the ability to change your Alg on the fly.

We do this by providing a library of hardware components (Intellectual Property Cores) for you to
use in your FPGA design, and corresponding server-side software libraries for managing your Alg.

By modularizing your Alg and using the Cheetah Framework you can:

 Change the algorithm by configuring connectivity between the Alg’s modules

 Tweak the algorithm by changing parameters inside the Alg’s modules

 Manage your Alg by collecting audit data

… without recoding your FPGA.

In this diagram, the algorithm
has been divided into a
number of modules (m1..m4,
and macd). Each of these
modules builds upon Cheetah
Cub Intellectual Property Cores
(shown orange in the m1 inset)
to provide run-time
configurability, status, and
auditing. The interconnections
between the modules is
configurable, allowing you to
include or exclude various
processing steps.

-4-

cheetah_wp_statarb.docx Copyright © 2012, Cheetah Solutions V1.1 Sep 2013
Patent Pending 61739845

As an example, the diagram on the right
shows how some simple modules might be
interconnected to produce a trading
algorithm that issues a buy order whenever a
fast moving average crosses a slow moving
average.

Each of these modules can be configured on
the fly. For example:

 Configure the Input Filter to respond
only to certain instruments.

 Configure the length of the fast and
slow EMAs.

 Configure the tolerance in the
Comparator.

 Configure the position limit in the
Order Gen.

 Introduce or remove a module (such as “extra filter”) from the path.

Cheetah Solutions makes it fast and easy

Cheetah offers framework solutions for support of pipelined processing, giving you support for data
and decision rates up to 60 million events per second over up to 255 instruments. Latencies as low as
100-200ns are possible.

Data sharing between modules can be either event driven (eg: price ticks, volume ticks), or by
asynchronous lookup which allows one module to publish instrument statistical data and others to
access this data.

Next Steps

Visit www.cheetah.solutions.com to read more. Request detailed specification sheets or contact us
to discuss project solutions and licensing models.

info@cheetah-solutions.com

-5-

cheetah_wp_statarb.docx Copyright © 2012, Cheetah Solutions V1.1 Sep 2013
Patent Pending 61739845

The Cheetah Offering

In summary, Cheetah provides the following libraries:

Cheetah Cubs A library of FPGA
Intellectual Property
Cores to help you build
your Alg modules.

 Tick stores

 Moving
averages,

 Instrument
filter

 Hashmap

 Period filter

 Config & status

Cheetah Framework A library of Intellectual
Property Cores to glue
your Alg modules
together in
reconfigurable ways.

 Remote configuration of your Alg
modules

 Get status information from your Alg
modules

 Data audit capability

 Runtime configurable interconnect
routing

 Interconnect for statistical data

Cheetah Host Server side library to

interface your
software components.

 Send configuration information to your
Alg

 Get status information from your Alg

 Get audit data

Cheetah Blocks A library of standard
ready to go Alg
modules.

 EMA

 MACD

 ATR

 ADX

 Arithmetic and
Logic

Glossary
EMA Exponential Moving

Average
A trend indicator that smooths and delays a signal such as a stream of
price ticks.

FPGA Field Programmable Gate
Array

An electronic chip that can be configured to create arbitrary digital
electronic circuits.

MACD Moving Average
Convergence Divergence

A particular type of technical indicator that compares moving averages
of different lengths and can be used to predict rising or falling trends.

NIC Network Interface
Controller

An electronic circuit board that plugs into your server and connects the
network (wired or fibre) to the server.

PCIe Peripheral Component
Interconnect Express

A standard server bus for interface cards such as a NIC to plug into.

Pipelining - The technique of cascading a number of processing stages sequentially
(like a manufacturing assembly line) so that each state executes
concurrently. This increases throughput.

TCP/
UDP/
IP

Transport Control
Protocol / User Datagram
Protocol / Internet
Protocol

Network protocols commonly used for communications over networks.

